Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Clin Infect Dis ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20238063

ABSTRACT

INTRODUCTION: Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS: Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24 hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS: Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0 mg/L (9.9-122.0) to 11.5 mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS: Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death.

2.
CHEST Critical Care ; : 100002, 2023.
Article in English | ScienceDirect | ID: covidwho-2309458

ABSTRACT

Background Cardiac function of critically ill patients with COVID-19 generally has been reported from clinically obtained data. Echocardiographic deformation imaging can identify ventricular dysfunction missed by traditional echocardiographic assessment. Research Question What is the prevalence of ventricular dysfunction and what are its implications for the natural history of critical COVID-19? Study Design and Methods This is a multicenter prospective cohort of critically ill patients with COVID-19. We performed serial echocardiography and lower extremity vascular ultrasound on hospitalization days 1, 3, and 8. We defined left ventricular (LV) dysfunction as the absolute value of longitudinal strain of < 17% or LV ejection fraction (LVEF) of < 50%. Primary clinical outcome was inpatient survival. Results We enrolled 110 patients. Thirty-nine (35.5%) died before hospital discharge. LV dysfunction was present at admission in 38 patients (34.5%) and in 21 patients (36.2%) on day 8 (P = .59). Median baseline LVEF was 62% (interquartile range [IQR], 52%-69%), whereas median absolute value of baseline LV strain was 16% (IQR, 14%-19%). Survivors and nonsurvivors did not differ statistically significantly with respect to day 1 LV strain (17.9% vs 14.4%;P = .12) or day 1 LVEF (60.5% vs 65%;P = .06). Nonsurvivors showed worse day 1 right ventricle (RV) strain than survivors (16.3% vs 21.2%;P = .04). Interpretation Among patients with critical COVID-19, LV and RV dysfunction is common, frequently identified only through deformation imaging, and early (day 1) RV dysfunction may be associated with clinical outcome.

3.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2303367

ABSTRACT

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Subject(s)
COVID-19 , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , Vasodilator Agents , Adult , Female , Humans , Male , Middle Aged , Angiotensin II/metabolism , Angiotensins/administration & dosage , Angiotensins/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Hypoxia/drug therapy , Hypoxia/etiology , Hypoxia/mortality , Infusions, Intravenous , Ligands , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Randomized Controlled Trials as Topic , Receptor, Angiotensin, Type 1/administration & dosage , Receptor, Angiotensin, Type 1/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
4.
MMWR Morb Mortal Wkly Rep ; 72(17): 463-468, 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2294077

ABSTRACT

As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , Hospital Mortality , Pandemics , Respiration, Artificial , SARS-CoV-2 , RNA, Messenger
5.
J Intensive Care Med ; : 8850666231162566, 2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2260824

ABSTRACT

Prone position ventilation (PPV) is one of the few interventions with a proven mortality benefit in the management of acute respiratory distress syndrome (ARDS), yet it is underutilized as demonstrated by multiple large observational studies. Significant barriers to its consistent application have been identified and studied. But the complex interplay of a multidisciplinary team makes its consistent application challenging. We present a framework of multidisciplinary collaboration that identifies the appropriate patients for this intervention and discuss our institutional experience applying a multidisciplinary team to implement prone position (PP) leading up to and through the current COVID-19 pandemic. We also highlight the role of such multidisciplinary teams in the effective implementation of prone positioning in ARDS throughout a large health care system. We emphasize the importance of proper selection of patients and provide guidance on how a protocolized approach can be utilized for proper patient selection.

6.
J Infect Dis ; 2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2257228

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by RT-qPCR in specimens from 3,204 individuals hospitalized with COVID-19 at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Ct values at presentation for N (mean ±standard deviation) were 24.14±4.53 for non-variants of concern, 25.15±4.33 for Alpha, 25.31±4.50 for Delta, and 26.26±4.42 for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements adds little information for the purposes of estimating infectivity.

7.
Clin Infect Dis ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2283784

ABSTRACT

BACKGROUND: The COVID-19 pandemic was associated with historically low influenza circulation during the 2020-2021 season, followed by increase in influenza circulation during the 2021-2022 US season. The 2a.2 subgroup of the influenza A(H3N2) 3C.2a1b subclade that predominated was antigenically different from the vaccine strain. METHODS: To understand the effectiveness of the 2021-2022 vaccine against hospitalized influenza illness, a multi-state sentinel surveillance network enrolled adults aged ≥18 years hospitalized with acute respiratory illness (ARI) and tested for influenza by a molecular assay. Using the test-negative design, vaccine effectiveness (VE) was measured by comparing the odds of current season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative controls, adjusting for confounders. A separate analysis was performed to illustrate bias introduced by including SARS-CoV-2 positive controls. RESULTS: A total of 2334 patients, including 295 influenza cases (47% vaccinated), 1175 influenza- and SARS-CoV-2 negative controls (53% vaccinated), and 864 influenza-negative and SARS-CoV-2 positive controls (49% vaccinated), were analyzed. Influenza VE was 26% (95%CI: -14 to 52%) among adults aged 18-64 years, -3% (95%CI: -54 to 31%) among adults aged ≥65 years, and 50% (95%CI: 15 to 71%) among adults 18-64 years without immunocompromising conditions. Estimated VE decreased with inclusion of SARS-CoV-2-positive controls. CONCLUSIONS: During a season where influenza A(H3N2) was antigenically different from the vaccine virus, vaccination was associated with a reduced risk of influenza hospitalization in younger immunocompetent adults. However, vaccination did not provide protection in adults ≥65 years of age. Improvements in vaccines, antivirals, and prevention strategies are warranted.

8.
J Racial Ethn Health Disparities ; 2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-2269641

ABSTRACT

BACKGROUND: US racial and ethnic minorities have well-established elevated rates of comorbidities, which, compounded with healthcare access inequity, often lead to worse health outcomes. In the current COVID-19 pandemic, it is important to understand existing disparities in minority groups' critical care outcomes and mechanisms behind these-topics that have yet to be well-explored. OBJECTIVE: Assess for disparities in racial and ethnic minority groups' COVID-19 critical care outcomes. DESIGN: Retrospective cohort study. PARTICIPANTS: A total of 2125 adult patients who tested positive for COVID-19 via RT-PCR between March and December 2020 and required ICU admission at the Cleveland Clinic Hospital Systems were included. MAIN MEASURES: Primary outcomes were mortality and hospital length of stay. Cohort-wide analysis and subgroup analyses by pandemic wave were performed. Multivariable logistic regression models were built to study the associations between mortality and covariates. KEY RESULTS: While crude mortality was increased in White as compared to Black patients (37.5% vs. 30.5%, respectively; p = 0.002), no significant differences were appraised after adjustment or across pandemic waves. Although median hospital length of stay was comparable between these groups, ICU stay was significantly different (4.4 vs. 3.4, p = 0.003). Mortality and median hospital and ICU length of stay did not differ significantly between Hispanic and non-Hispanic patients. Neither race nor ethnicity was associated with mortality due to COVID-19, although APACHE score, CKD, malignant neoplasms, antibiotic use, vasopressor requirement, and age were. CONCLUSIONS: We found no significant differences in mortality or hospital length of stay between different races and ethnicities. In a pandemic-influenced critical care setting that operated outside conditions of ICU strain and implemented standardized protocol enabling equitable resource distribution, disparities in outcomes often seen among racial and ethnic minority groups were successfully mitigated.

9.
Clin Infect Dis ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-2236202

ABSTRACT

BACKGROUND: COVID-19 mRNA vaccines were authorized in the United States in December 2020. Although vaccine effectiveness (VE) against mild infection declines markedly after several months, limited understanding exists on the long-term durability of protection against COVID-19-associated hospitalization. METHODS: Case control analysis of adults (≥18 years) hospitalized at 21 hospitals in 18 states March 11 - December 15, 2021, including COVID-19 case patients and RT-PCR-negative controls. We included adults who were unvaccinated or vaccinated with two doses of a mRNA vaccine before the date of illness onset. VE over time was assessed using logistic regression comparing odds of vaccination in cases versus controls, adjusting for confounders. Models included dichotomous time (<180 vs ≥180 days since dose two) and continuous time modeled using restricted cubic splines. RESULTS: 10,078 patients were included, 4906 cases (23% vaccinated) and 5172 controls (62% vaccinated). Median age was 60 years (IQR 46-70), 56% were non-Hispanic White, and 81% had ≥1 medical condition. Among immunocompetent adults, VE <180 days was 90% (95%CI: 88-91) vs 82% (95%CI: 79-85) at ≥180 days (p < 0.001). VE declined for Pfizer-BioNTech (88% to 79%, p < 0.001) and Moderna (93% to 87%, p < 0.001) products, for younger adults (18-64 years) [91% to 87%, p = 0.005], and for adults ≥65 years of age (87% to 78%, p < 0.001). In models using restricted cubic splines, similar changes were observed. CONCLUSION: In a period largely pre-dating Omicron variant circulation, effectiveness of two mRNA doses against COVID-19-associated hospitalization was largely sustained through 9 months.

10.
Am J Respir Crit Care Med ; 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2228308

ABSTRACT

RATIONALE: There are limited therapeutic options for patients with COVID-19-related acute respiratory distress syndrome (ARDS) with inflammation-mediated lung injury. Mesenchymal stromal cells offer promise as immunomodulatory agents. OBJECTIVES: Evaluation of efficacy and safety of allogeneic mesenchymal cells in mechanically-ventilated patients with moderate or severe COVID-induced respiratory failure. METHODS: Patients were randomized to two infusions of 2 million cells/kg or sham infusions, in addition to standard of care. We hypothesized that cell therapy would be superior to sham-control for the primary endpoint of 30-day mortality. The key secondary endpoint was ventilator-free survival within 60 days, accounting for deaths and withdrawals in a ranked analysis. MEASUREMENTS AND MAIN RESULTS: At the third interim analysis, the Data and Safety Monitoring Board recommended that the trial halt enrollment as the pre-specified mortality reduction from 40% to 23% was unlikely to be achieved (n=222 out of planned 300). Thirty-day mortality was 37.5% (42/112) in cell recipients versus 42.7% (47/110) in control patients (RR 0.88;95% CI 0.64,1.21;p=0.43). There were no significant differences in days alive off ventilation within 60 days (median rank 117.3 [IQR:60.0,169.5] in cell patients and 102.0 [IQR:54.0,162.5] in controls; higher is better). Resolution or improvement of ARDS at 30-days was observed in 51/104 (49.0%) cell recipients and 46/106 (43.4%) of control patients (OR 1.36;95% CI 0.57, 3.21). There were no infusion-related toxicities and overall serious adverse events over 30 days were similar. CONCLUSIONS: Mesenchymal cells, while safe, did not improve 30-day survival or 60-day ventilator-free days in patients with moderate/severe COVID-related acute respiratory distress syndrome. Clinical trial registration available at www. CLINICALTRIALS: gov, ID:NCT04371393. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

11.
Open Forum Infect Dis ; 10(1): ofac698, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2212869

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE) studies are increasingly reporting relative VE (rVE) comparing a primary series plus booster doses with a primary series only. Interpretation of rVE differs from traditional studies measuring absolute VE (aVE) of a vaccine regimen against an unvaccinated referent group. We estimated aVE and rVE against COVID-19 hospitalization in primary-series plus first-booster recipients of COVID-19 vaccines. Methods: Booster-eligible immunocompetent adults hospitalized at 21 medical centers in the United States during December 25, 2021-April 4, 2022 were included. In a test-negative design, logistic regression with case status as the outcome and completion of primary vaccine series or primary series plus 1 booster dose as the predictors, adjusted for potential confounders, were used to estimate aVE and rVE. Results: A total of 2060 patients were analyzed, including 1104 COVID-19 cases and 956 controls. Relative VE against COVID-19 hospitalization in boosted mRNA vaccine recipients versus primary series only was 66% (95% confidence interval [CI], 55%-74%); aVE was 81% (95% CI, 75%-86%) for boosted versus 46% (95% CI, 30%-58%) for primary. For boosted Janssen vaccine recipients versus primary series, rVE was 49% (95% CI, -9% to 76%); aVE was 62% (95% CI, 33%-79%) for boosted versus 36% (95% CI, -4% to 60%) for primary. Conclusions: Vaccine booster doses increased protection against COVID-19 hospitalization compared with a primary series. Comparing rVE measures across studies can lead to flawed interpretations of the added value of a new vaccination regimen, whereas difference in aVE, when available, may be a more useful metric.

12.
Critical Care Medicine ; 51:441-441, 2023.
Article in English | Academic Search Complete | ID: covidwho-2190622

ABSTRACT

Of those 189 patients were non COVID-19 related ARF and 141 met the criteria for acute respiratory distress syndrome (ARDS), 64 patients had ARF due to COVID-19, of which 63 patients met criteria for ARDS. B Conclusions: b Patients with ARF and ARDS received ECMO consultation later in the disease course and the use of salvage therapies was more pronounced during the COVID-19 pandemic. In the non-COVID-19 ARF group 30% patients were extubated versus 3.1% patients (p=0.001) in the COVID-19 ARF group, and 32 % patients received tracheostomy versus 47% patients received tracheostomy (p=0.04) in the COVID-19 ARF group. [Extracted from the article]

13.
MMWR Morb Mortal Wkly Rep ; 71(5152): 1625-1630, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2204208

ABSTRACT

Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network§ assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccine Efficacy , Hospitalization , RNA, Messenger , Vaccines, Combined
14.
Vaccine ; 40(48): 6979-6986, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2082297

ABSTRACT

BACKGROUND: Test-negative design (TND) studies have produced validated estimates of vaccine effectiveness (VE) for influenza vaccine studies. However, syndrome-negative controls have been proposed for differentiating bias and true estimates in VE evaluations for COVID-19. To understand the use of alternative control groups, we compared characteristics and VE estimates of syndrome-negative and test-negative VE controls. METHODS: Adults hospitalized at 21 medical centers in 18 states March 11-August 31, 2021 were eligible for analysis. Case patients had symptomatic acute respiratory infection (ARI) and tested positive for SARS-CoV-2. Control groups were test-negative patients with ARI but negative SARS-CoV-2 testing, and syndrome-negative controls were without ARI and negative SARS-CoV-2 testing. Chi square and Wilcoxon rank sum tests were used to detect differences in baseline characteristics. VE against COVID-19 hospitalization was calculated using logistic regression comparing adjusted odds of prior mRNA vaccination between cases hospitalized with COVID-19 and each control group. RESULTS: 5811 adults (2726 cases, 1696 test-negative controls, and 1389 syndrome-negative controls) were included. Control groups differed across characteristics including age, race/ethnicity, employment, previous hospitalizations, medical conditions, and immunosuppression. However, control-group-specific VE estimates were very similar. Among immunocompetent patients aged 18-64 years, VE was 93 % (95 % CI: 90-94) using syndrome-negative controls and 91 % (95 % CI: 88-93) using test-negative controls. CONCLUSIONS: Despite demographic and clinical differences between control groups, the use of either control group produced similar VE estimates across age groups and immunosuppression status. These findings support the use of test-negative controls and increase confidence in COVID-19 VE estimates produced by test-negative design studies.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Adult , United States/epidemiology , Influenza, Human/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Testing , Vaccine Efficacy , Case-Control Studies , Hospitalization , Syndrome
15.
MMWR Morb Mortal Wkly Rep ; 71(42): 1327-1334, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2081112

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529 or BA.1) became predominant in the United States by late December 2021 (1). BA.1 has since been replaced by emerging lineages BA.2 (including BA.2.12.1) in March 2022, followed by BA.4 and BA.5, which have accounted for a majority of SARS-CoV-2 infections since late June 2022 (1). Data on the effectiveness of monovalent mRNA COVID-19 vaccines against BA.4/BA.5-associated hospitalizations are limited, and their interpretation is complicated by waning of vaccine-induced immunity (2-5). Further, infections with earlier Omicron lineages, including BA.1 and BA.2, reduce vaccine effectiveness (VE) estimates because certain persons in the referent unvaccinated group have protection from infection-induced immunity. The IVY Network† assessed effectiveness of 2, 3, and 4 doses of monovalent mRNA vaccines compared with no vaccination against COVID-19-associated hospitalization among immunocompetent adults aged ≥18 years during December 26, 2021-August 31, 2022. During the BA.1/BA.2 period, VE 14-150 days after a second dose was 63% and decreased to 34% after 150 days. Similarly, VE 7-120 days after a third dose was 79% and decreased to 41% after 120 days. VE 7-120 days after a fourth dose was 61%. During the BA.4/BA.5 period, similar trends were observed, although CIs for VE estimates between categories of time since the last dose overlapped. VE 14-150 days and >150 days after a second dose was 83% and 37%, respectively. VE 7-120 days and >120 days after a third dose was 60%and 29%, respectively. VE 7-120 days after the fourth dose was 61%. Protection against COVID-19-associated hospitalization waned even after a third dose. The newly authorized bivalent COVID-19 vaccines include mRNA from the ancestral SARS-CoV-2 strain and from shared mRNA components between BA.4 and BA.5 lineages and are expected to be more immunogenic against BA.4/BA.5 than monovalent mRNA COVID-19 vaccines (6-8). All eligible adults aged ≥18 years§ should receive a booster dose, which currently consists of a bivalent mRNA vaccine, to maximize protection against BA.4/BA.5 and prevent COVID-19-associated hospitalization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , United States/epidemiology , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Vaccines, Combined , RNA, Messenger
16.
Crit Care Med ; 50(11): 1638-1643, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2077907

ABSTRACT

OBJECTIVES: Cerebrovascular injury associated with COVID-19 has been recognized, but the mechanisms remain uncertain. Acute respiratory distress syndrome (ARDS) is a severe pulmonary injury, which is associated with both ischemic and hemorrhagic stroke. It remains unclear if cerebrovascular injuries associated with severe COVID-19 are unique to COVID-19 or a consequence of severe respiratory disease or its treatment. The frequency and patterns of cerebrovascular injury on brain MRI were compared among patients with COVID-19 ARDS and non-COVID-19 ARDS. DESIGN: A case-control study. SETTING: A tertiary academic hospital system. PATIENTS: Adult patients (>18 yr) with COVID-19 ARDS (March 2020 to July 2021) and non-COVID-19 ARDS (January 2010-October 2018) who underwent brain MRI during their index hospitalization. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Cerebrovascular injury on MRI included cerebral ischemia (ischemic infarct or hypoxic ischemic brain injury) and intracranial hemorrhage (intraparenchymal, subarachnoid, or subdural, and cerebral microbleed [CMB]).Twenty-six patients with COVID-19 ARDS and sixty-six patients with non-COVID ARDS underwent brain MRI during the index hospitalization, resulting in 23 age- and sex-matched pairs. The frequency of overall cerebrovascular injury (57% vs 61%), cerebral ischemia (35% vs 43%), intracranial hemorrhage (43% vs 48%), and CMB (52% vs 41%) between COVID-19 ARDS and non-COVID-19 ARDS patients was similar (all p values >0.05). However, four of 26 patients (15%) with COVID-19 and no patients with non-COVID-19 ARDS had disseminated leukoencephalopathy with underlying CMBs, an imaging pattern that has previously been reported in patients with COVID-19. CONCLUSIONS: In a case-control study of selected ARDS patients with brain MRI, the frequencies of ischemic and hemorrhagic cerebrovascular injuries were similar between COVID-19 versus non-COVID-19 ARDS patients. However, the MRI pattern of disseminated hemorrhagic leukoencephalopathy was unique to the COVID-19 ARDS patients in this cohort.


Subject(s)
Brain Ischemia , COVID-19 , Leukoencephalopathies , Respiratory Distress Syndrome , Adult , Brain Ischemia/diagnostic imaging , Brain Ischemia/epidemiology , COVID-19/complications , Case-Control Studies , Humans , Intracranial Hemorrhages , Magnetic Resonance Imaging , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology
17.
Clin Infect Dis ; 75(Supplement_2): S159-S166, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2077717

ABSTRACT

Background . Adults in the United States (US) began receiving the adenovirus vector coronavirus disease 2019 (COVID-19) vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. Methods . In a multicenter case-control analysis of US adults (≥18 years) hospitalized 11 March to 15 December 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. Results . After excluding patients receiving mRNA vaccines, among 3979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% confidence interval [CI]: 63-75%) overall, including 55% (29-72%) among immunocompromised patients, and 72% (64-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59-82%]), 91-180 days (71% [60-80%]), and 181-274 days (70% [54-81%]) postvaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18-65%) among immunocompetent patients. Conclusions . The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months postvaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Ad26COVS1 , Adult , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Influenza, Human/prevention & control , Severity of Illness Index , United States/epidemiology
18.
BMJ ; 379: e072065, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2064091

ABSTRACT

OBJECTIVE: To compare the effectiveness of a primary covid-19 vaccine series plus booster doses with a primary series alone for the prevention of hospital admission with omicron related covid-19 in the United States. DESIGN: Multicenter observational case-control study with a test negative design. SETTING: Hospitals in 18 US states. PARTICIPANTS: 4760 adults admitted to one of 21 hospitals with acute respiratory symptoms between 26 December 2021 and 30 June 2022, a period when the omicron variant was dominant. Participants included 2385 (50.1%) patients with laboratory confirmed covid-19 (cases) and 2375 (49.9%) patients who tested negative for SARS-CoV-2 (controls). MAIN OUTCOME MEASURES: The main outcome was vaccine effectiveness against hospital admission with covid-19 for a primary series plus booster doses and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. Vaccine effectiveness analyses were stratified by immunosuppression status (immunocompetent, immunocompromised). The primary analysis evaluated all covid-19 vaccine types combined, and secondary analyses evaluated specific vaccine products. RESULTS: Overall, median age of participants was 64 years (interquartile range 52-75 years), 994 (20.8%) were immunocompromised, 85 (1.8%) were vaccinated with a primary series plus two boosters, 1367 (28.7%) with a primary series plus one booster, and 1875 (39.3%) with a primary series alone, and 1433 (30.1%) were unvaccinated. Among immunocompetent participants, vaccine effectiveness for prevention of hospital admission with omicron related covid-19 for a primary series plus two boosters was 63% (95% confidence interval 37% to 78%), a primary series plus one booster was 65% (58% to 71%), and for a primary series alone was 37% (25% to 47%) (P<0.001 for the pooled boosted regimens compared with a primary series alone). Vaccine effectiveness was higher for a boosted regimen than for a primary series alone for both mRNA vaccines (BNT162b2 (Pfizer-BioNTech): 73% (44% to 87%) for primary series plus two boosters, 64% (55% to 72%) for primary series plus one booster, and 36% (21% to 48%) for primary series alone (P<0.001); mRNA-1273 (Moderna): 68% (17% to 88%) for primary series plus two boosters, 65% (55% to 73%) for primary series plus one booster, and 41% (25% to 54%) for primary series alone (P=0.001)). Among immunocompromised patients, vaccine effectiveness for a primary series plus one booster was 69% (31% to 86%) and for a primary series alone was 49% (30% to 63%) (P=0.04). CONCLUSION: During the first six months of 2022 in the US, booster doses of a covid-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing hospital admissions with omicron related covid-19. READERS' NOTE: This article is a living test negative design study that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Hospitals , Humans , Middle Aged , SARS-CoV-2 , United States/epidemiology , Vaccine Efficacy
19.
Curr Opin Crit Care ; 28(6): 667-673, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2063070

ABSTRACT

PURPOSE OF REVIEW: Acute surge events result in health capacity strain, which can result in deviations from normal care, activation of contingencies and decisions related to resource allocation. This review discusses the impact of health capacity strain on patient centered outcomes. RECENT FINDINGS: This manuscript discusses the lack of validated metrics for ICU strain capacity and a need for understanding the complex interrelationships of strain with patient outcomes. Recent work through the coronavirus disease 2019 pandemic has shown that acute surge events are associated with significant increase in hospital mortality. Though causal data on the differential impact of surge actions and resource availability on patient outcomes remains limited the overall signal consistently highlights the link between ICU strain and critical care outcomes in both normal and surge conditions. SUMMARY: An understanding of ICU strain is fundamental to the appropriate clinical care for critically ill patients. Accounting for stain on outcomes in critically ill patients allows for minimization of variation in care and an ability of a given healthcare system to provide equitable, and quality care even in surge scenarios.


Subject(s)
COVID-19 , Critical Illness , Humans , Critical Illness/therapy , Intensive Care Units , COVID-19/epidemiology , Pandemics , Hospital Mortality
20.
Acute Crit Care ; 37(3): 312-321, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2030176

ABSTRACT

BACKGROUND: At outset of the coronavirus disease 2019 (COVID-19) pandemic, the significance of bacterial and fungal coinfections in individuals with COVID-19 was unknown. Initial reports indicated that the prevalence of coinfection in the general population was low, but there was uncertainty regarding the risk of coinfection in critically ill patients. METHODS: Nine hundred critically ill adult patients with COVID-19 infection were enrolled in this observational case-control study. Patients with a coinfection (case) and patients without a coinfection (control) were compared using univariate and multivariable analyses. A subgroup analysis was performed on patients with coinfection, dividing them into early (infection within 7 days) and late (infection after 7 days) infection groups. RESULTS: Two hundred and thirty-three patients (25.9%) had a bacterial or fungal coinfection. Vasopressor use (P<0.001) and severity of illness (higher Acute Physiology and Chronic Health Evaluation III score, P=0.009) were risk factors for the development of a coinfection. Patients with coinfection had higher mortality and length of stay. Vasopressor and corticosteroid use and central line and foley catheter placement were risk factors for late infection (>7 days). There were high rates of drug-resistant infections. CONCLUSIONS: Critically ill patients with COVID-19 are at risk for both community-acquired and hospital-acquired infections throughout their hospitalization for COVID-19. It is important to consider the development of a coinfection in clinically worsening critically ill patients with COVID-19 and consider the likelihood of drug-resistance when choosing an empiric regimen.

SELECTION OF CITATIONS
SEARCH DETAIL